- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Pruden, Amy (4)
-
Edwards, Marc A. (3)
-
Rhoads, William J. (3)
-
Song, Yang (2)
-
Brown, Connor L (1)
-
Cullom, Abraham C. (1)
-
Dai, Dongjuan (1)
-
Edwards, Marc A (1)
-
Helm, Richard F (1)
-
Mena-Aguilar, Didier (1)
-
Rhoads, William J (1)
-
Spencer, M. Storme (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (2)
-
Zhou, Zhi (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cu is an antimicrobial that is commonly applied to premise (i.e., building) plumbing systems for Legionella control, but the precise mechanisms of inactivation are not well defined. Here, we applied a suite of viability assays and mass spectrometry-based proteomics to assess the mechanistic effects of Cu on L. pneumophila. Although a five- to six-log reduction in culturability was observed with 5 mg/L Cu2+ exposure, cell membrane integrity only indicated a <50% reduction. Whole-cell proteomic analysis revealed that AhpD, a protein related to oxidative stress, was elevated in Cu-exposed Legionella relative to culturable cells. Other proteins related to cell membrane synthesis and motility were also higher for the Cu-exposed cells relative to controls without Cu. While the proteins related to primary metabolism decreased for the Cu-exposed cells, no significant differences in the abundance of proteins related to virulence or infectivity were found, which was consistent with the ability of VBNC cells to cause infections. Whereas the cell-membrane integrity assay provided an upper-bound measurement of viability, an amoebae co-culture assay provided a lower-bound limit. The findings have important implications for assessing Legionella risk following its exposure to copper in engineered water systems.more » « less
-
Song, Yang; Pruden, Amy; Edwards, Marc A.; Rhoads, William J. (, Environmental Science & Technology)null (Ed.)
-
Spencer, M. Storme; Cullom, Abraham C.; Rhoads, William J.; Pruden, Amy; Edwards, Marc A. (, PLOS ONE)Zhou, Zhi (Ed.)
-
Dai, Dongjuan; Rhoads, William J.; Edwards, Marc A.; Pruden, Amy (, Frontiers in Microbiology)null (Ed.)
An official website of the United States government
